Import Vector Voting Model for Multi-pattern Classification
نویسندگان
چکیده
منابع مشابه
Support Vector Machines for Pattern Classification
Introducing a new hobby for other people may inspire them to join with you. Reading, as one of mutual hobby, is considered as the very easy hobby to do. But, many people are not interested in this hobby. Why? Boring is the reason of why. However, this feel actually can deal with the book and time of you reading. Yeah, one that we will refer to break the boredom in reading is choosing support ve...
متن کاملFuzzy Support Vector Machines for Pattern Classification
In conventional support vector machines (SVMs), an n-class problem is converted into n two-class problems. For the ith two-class problem we determine the optimal decision function which separates class i from the remaining classes. In classification, a datum is classified into class i only when the value of the ith decision function is positive. In this architecture, the datum is unclassifiable...
متن کاملA Joint Semantic Vector Representation Model for Text Clustering and Classification
Text clustering and classification are two main tasks of text mining. Feature selection plays the key role in the quality of the clustering and classification results. Although word-based features such as term frequency-inverse document frequency (TF-IDF) vectors have been widely used in different applications, their shortcoming in capturing semantic concepts of text motivated researches to use...
متن کاملSupport Vector Machines for Multi-class Classification
A b s t r a c t : Support vector machines (SVMs) are primarily designed for 2-class classification problems. Although in several papers it is mentioned that the combination of K SVMs can be used to solve a K-class classification problem, such a procedure requires some care. In this paper, the scaling problem of different SVMs is highlighted. Various normalization methods are proposed to cope wi...
متن کاملA QUADRATIC MARGIN-BASED MODEL FOR WEIGHTING FUZZY CLASSIFICATION RULES INSPIRED BY SUPPORT VECTOR MACHINES
Recently, tuning the weights of the rules in Fuzzy Rule-Base Classification Systems is researched in order to improve the accuracy of classification. In this paper, a margin-based optimization model, inspired by Support Vector Machine classifiers, is proposed to compute these fuzzy rule weights. This approach not only considers both accuracy and generalization criteria in a single objective fu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Korean Institute of Intelligent Systems
سال: 2003
ISSN: 1976-9172
DOI: 10.5391/jkiis.2003.13.6.655